

Vision for the Future: BESSY^{VSR} A Variable Bunch Length Storage Ring

Gode Wüstefeld, HZB ESLS, Aarhus, Nov. 23 - 24, 2011

- Motivation
- Limits of short bunches:
 - measurements & scaling laws
- Bunch focusing by sc-cavities
- Double beam option
- Expected results

why short e bunches:

- time resolved, picoseconds X-ray experiments
- CSR for THz experiments

present situation:

dedicated low-α shifts at BESSY, σ=3ps
 4 blocks of 3 days per year,
 two operation modes:

40 mA (bursting) and 15 mA (stable)

<u>future goal:</u>

 simultaneously <u>15 ps</u> & <u>1.5</u> ps bunch mode up to 100x more current in short bunches (→ 10000x more THz power)

2x8

<300 mA

6 nmrad

0.7E-3

- pioneering work at BESSY II, since 1999
- short bunch operation, $\underline{13 \text{ ps}} \rightarrow 3 \text{ ps}$ (rms) <u>700 fs are proved and analyzed</u>

- MLS - ring of PTB first ring to <u>control 3 orders of α </u> $\alpha = \alpha_0 + \alpha_1 \Delta p/p_0 + \alpha_2 (\Delta p/p_0)^2 + ...$ short bunch studies, "s

double-beam

"<u>stability thresholds of short</u> <u>bunches</u>" - subject of present PhD-thesis by <u>Markus Ries</u>, HZB

at fixed rf voltage amplitude of 1.35 MV

Are short bunches restricted to low currents ??

scaling law between $\underline{\alpha}$ and \underline{I} predicted by:

- bunched beam theory (Sacherer)
- Vlasov-Fokker-Planck simulation
- and coasting beam (Landau Damping)

'Keil-Schnell':

$$I | Z_0^{||}/n | \leq F \frac{\Delta p}{p_0} \alpha \frac{\Delta p}{p_0} E_0 / e \rightarrow I \sim \alpha \qquad I \sim V'$$

bunch length $\sigma \rightarrow \sigma \propto \sqrt{\alpha/V'}$

increasing the rf-gradient V' \times 100 $\rightarrow \alpha$ needs to be increased \times 100 \rightarrow I can be increased \times 100

- flexible fill pattern, I<300 mA
- <u>15 ps & 1.5</u> ps pulses simultaneous at all beam ports
- all IDs available

Simultaneously long & short bunches

sc-cavity # 1 (focusing)

Simultaneously long & short bunches

single particle tracking, BESSY II user optics & two sc-cavities

beam port

chromatic orbit length:

 $L = L_0(1 + \alpha \Delta p/p_0)$

orbits of equal length L=L₀: I) $\Delta p/p_0 = 0$ II) $\alpha = 0$

2 solutions if
$$\alpha = 0$$

 $\alpha = \alpha_0 + \alpha_2 (\Delta p/p_0)^2$
 $(\Delta p/p_0)_F = \pm \sqrt{-\alpha_0/\alpha_2}$

<u>2 sc-rf cavities & low α optics</u>

- double beam scheme combined with two sc-rf cavities
- →long and short bunches longitudinally <u>and</u> transversely separated

double beam scheme

short

puls

long

puls

measurements at MLS

e⁻ beam source point image

photon beam image (beam port exit)

transverse separation of photon beams

double beams can be easily produced at the MLS low- α optics \rightarrow good life time, \rightarrow high currents

BERLinPro and BESSY^{VSR}:

- BERLinPro cavities close to the BESSYVSR , 1.3 GHz to be scaled to 1.5 GHz and 1.75 GHz
- high current beam interaction with sc cavities

simultaneously long & short bunches:

