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1. Vertical emittance 

1.1 Quantum limit 
 direct photon recoil, 

1/g radiation cone 
 T. O. Raubenheimer, Tolerances to limit the 

vertical emittance in future storage rings,  
SLAC-PUB-4937, Aug.1991 

 independent of energy! 

 examples:   
  SLS   0.20 pm   
 MAX-IV  0.05 pm  
 PETRA-III  0.04 pm 

 lower limit of vertical emittance 

 quantum emittance << coupling 
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Coupling (diff. and sum resonances) from skew quads, 

sextupole heaves and quad rolls. 

1.2. Vertical emittance with coupling 
 A. Franchi et al., Vertical emittance reduction and 

preservation in electron storage rings via resonance 
drive terms correction, PRSTAB 14, 034002 (2011) 

Vertical correctors, bend rolls, quad heaves 

Vertical  

dispersion 
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Vertical emittance properties 

 Apparent- oscillates around the lattice. 

– oscillation amplitude is lower for low coupling 

 Projected- changes at skew quad kicks. 

 Eigen- is invariant. 

 Minimization of apparent 

 at one location  

minimizes eigen- too: 

 Simulation (TRACY, 100 seeds, 

SLS with 6 skew quads):  

Eigen- results, when optimizing 

on beam size at monitor () vs. 

optimizing on eigen- itself (  ).  

 Å. Andersson et al., NIM A 592 

(2008) 437-446 



2.1 BPM roll measurements 
 Methods: 

– Local bumps (150 mm) with fast orbit feedback:  
get BPM roll from corrector currents. 

– LOCO fit to response matrix. 

 BPM roll: 17 mrad RMS. 

 Origin: electronics. 

 Spoils measurements 
of vertical dispersion. 

 Low level implementation  
  as “3rd BBA constant”:  
  BPM sway, heave & roll 

  M. Böge et al., The Swiss Light  
Source – a test-bed for damping  
ring optimization, Proc. IPAC-2010 

 Correlation of two BPM roll measurements 

2. Machine preparation 



2.2 Knobs for coupling control 

 120 sextupoles (9 families) with additional coils: 

– 72 wired as horizontal/vertical orbit correctors. 

– 12 wired as auxiliary sextupoles for sextupole resonance 

suppression (empirical). 

– 36 wired as skew quadrupoles:  

12 dispersive, 24 non-dispersive. 

 Skew quads from orbit bumps in 120 sextupoles: 
     72 dispersive, 48 non-dispersive “skew quads” 

a2 = 2b3 yo 



2.3 Emittance (beam size) monitor 

 p-polarization method: 

image of vertically 

polarized visible-UV 

synchrotron radiation. 

 Get beam height from 

peak-to-valley intensity 

ratio: lookup-table of SRW 

simulations. 

 Resolution:  

Beam height 0.5 mm 

Emittance     0.7 pm 
(incl. dispersion subtraction) 

 Å. Andersson et al., NIM A 592 

(2008) 437-446 

 



 Existing monitor (364 nm) inside tunnel: 
– Aging problems (UV radiation damage?) 

– Upgrade: operate at 250 nm for higher resolution ( 3 mm beam height) 

 Proposal for new monitor: 
– Magnification  2..3. Reflective optics. Optical table outside tunnel.  



3.1 The SLS dynamic 
   girder alignment system 

 Remote positioning of the 48 
girders in 5 DOF (u, v, c, h, s) by 
eccentric cam shaft drives. 

 36 dipoles (no gradients) 
supported by adjacent girders. 
– except 3 super-bends: extra supports 

– except laser slicing insertion FEMTO 

 Magnet to girder alignment < 50 mm 

– girder rail 15 mm, magnet axis 30 mm 

  S. Zelenika et al., The SLS storage ring support 
and alignment systems, NIM A 467 (2001) 99 

3. Girder realignment 



3.2 Beam based girder alignment 

 48 girders (shift & angle) = 96 “correctors” 

 Response & correction matrices for 
– orbit correction (saves 75% CH, 100% CV strength ! ), 

– or, vertical dispersion suppression. 

 Orbit based remote girder alignment rejected: 
– Mistrust in girder moving procedures. 

– Possible negative impact on user operation. 

 

Vertical dispersion girder response and correction matrices and SVD weights 



3.3 Survey based girder realignment 

 Girder heave and pitch from survey 

 Align girders to medium line 
(long wavelength 

machine deformation 

is not a problem) 

 Fast orbit  

feedback active 

   

correctors  

confirm  

girder move. 

  M. Böge et al., SLS vertical emittance tuning, Proc. IPAC-2011 



Corrector strengths before and after girder realignment, and 

after beam based BPM calibration* (sector 1) 

(*girder move causes vacuum chamber deformation) 

 Factor 4 reduction of rms CV kick in sector (= 4 girders) 



Status (Sep.2011) : done, partially done,  malfunction  

Sector     1   2   3   4   5   6   7   8   9  10  11  12 

Vertical corrector kick (all CV) 140  81 mrad rms 

(expect 60 mrad rms after repair of sectors 4,9,11) 
 

 Re-establishment of  “train link” 
between G06 and G07 

G07 pitch 70 mm, confirmed by 
hydrostatic leveling system  

Manual alignment of super-bend 
between G06/G07  

 Improvement for beam line too. 

 

reference  

heave 



4.1 Vertical dispersion measurement 

 Vertical orbit as function of energy 

 Upgrade of RF oscillator for fast frequency shift 

 Prerequisite: determination of BPM roll errors. 

 

4. Emittance minimization 

Vertical dispersion 

measurement 

Energy range ± 0.3%  

(-Df = ± 920 Hz) 

20 points  

10 minutes 

65 mm resolution 



4.2 Vertical dispersion suppression 

 12 dispersive skew quadrupoles ( Dx  33 cm ) 

 73 BPMs  73  12 dispersion response matrix 

 Feed in measured Dy  apply   measure again. 

 Best results up to now:   Dy  1 mm RMS. 
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4.3 Betatron coupling correction 

 24 non-dispersive skew quads. 

 from model: coupled response matrix as function 
of skew quad strength: Jacobian {RM/ a2k}. 

 73 BPMs and CH/CV:  146  146  24 tensor. 

 Rearrange: 21316  24 matrix  SVD-inversion. 
– Alternative: use only coupled RM-quadrants: 

73  73  24 tensor  5329  24 matrix.  

 Feed in measured orbit response matrix. 

 Fit 24-vector {Da2} of skew quad strengths. 

 Apply inverse to machine:  -{Da2} . 

 Iterate within model for large errors. 

 Compensates also betatron coupling increase 
from previous vertical dispersion suppression. 



4.4 Orbit manipulation 

 “dispersion free steering” 

 Orbit bumps: 
– get  skew quads from sextupoles 

– get vertical dipoles from quadrupoles 

 Simultaneous suppression of vertical dispersion 
and betatron coupling. 

 Individual corrector method: use all correctors with 
additional constraints on orbit and optics  

 3-bump method: closed orbit bumps for 
compatibility with user operation. 

  S. Liuzzo et al., Low emittance studies for Super-B, Proc. IPAC-2010.  

  M. Aiba et al., Coupling and vertical dispersion correction in the SPS, 
Proc. IPAC-2010 

 



 Application of the individual corrector method: 

 Reduction Dy = 1.4  1.1 mm RMS. 

 Orbit 310 mm RMS. 

 Dispersion spikes resistant to correction 
 steps between girders 

 Recent (Aug. 30) MD-shift (S. Liuzzo, M. Aiba, M.Böge): 
 vertical emittance 3.6 pm with all skew quads off. 



4.5 Emittance achievements 
 Best result up to now (March 16, 2011): 

a) coupling correction 

b) vertical dispersion suppression  1.4 mm RMS 

c) 2 iterations of coupling correction 

 ! no orbit manipulations 

 Beam height 5  0.5 mm RMS   y = 1.9  0.4 pm 

a) 
b) 

c) beam height 

lifetime 

( dispersion not subtracted ) 



Outlook 

 Next steps  
– repair malfunctioning girder movers and realign 

– iterate further dispersion and coupling correction 

– orbit manipulations on top of skew quad correction 

 Emittance monitor maintainence & upgrade 
– understand and cure aging problems 

– operate existing monitor at lower wavelength for 
higher resolution (Dec. 2011) 

– design, construction and commissioning of a new 
monitor with even higher resolution (2012).  


