

Low vertical emittance at the SLS

Masamitsu Aiba, Michael Böge, Natalia Milas, Andreas Streun Paul Scherrer Institut, Villigen, Switzerland

SVET collaboration

- **1. Vertical emittance**
- 1.1 Quantum limit
- 1.2 Coupling
- 2. Machine preparation
- 2.1 BPM roll measurement
- 2.2 Knobs for coupling control
- 2.3 Emittance monitor

- 3. Girder realignment
- 3.1 SLS dynamic alignment
- 3.2 Beam based girder alignment
- 3.3 Survey based girder alignment
- 4. Emittance minimization
- 4.1 Vertical dispersion measurement
- 4.2 Vertical dispersion suppression
- 4.3 Coupling correction
- 4.4 Orbit manipulation
- 4.5 Emittance achievements

Conclusion & Outlook

ESLS XIX meeting, Aarhus, Nov. 23-24, 2011

SVET Collaboration

Test Infrastructure and Accelerator Research Area <u>www.eu-tiara.eu</u> Work package 6 "SVET"

(SLS Vertical Emittance Tuning)

Partially funded by the European Commission under the FP7-INFRASTRUCTURES-2010-1/ INFRA-2010-2.2.11 project TIARA (CNI-PP). Grant agreement no 261905.

SVET main collaborators

PSI → SLS coupling suppression and control Masamitsu Aiba, Michael Böge, Terence Garvey, Andreas Lüdeke, Natalia Milas, Volker Schlott, Andreas Streun

$\text{CERN} \rightarrow \text{CLIC damping ring design}$

Fanouria Antoniou, Enrico Bravin, Aurelie Goldblatt, Erk Jensen, Thibaut Lefevre, <u>Yannis Papaphilippou</u>, Federico Roncarolo

INFN/LNF \rightarrow Super-B factory design

Marica Biagini, Theo Demma, Susanna Guiducci, Simone Liuzzo, Fabio Marcellini, Mario Serio

Max-IV Lab \rightarrow **MAX-IV emittance measurement and coupling control** Åke Andersson, Jonas Breunlin

1. Vertical emittance

1.1 Quantum limit

direct photon recoil,
 1/γ radiation cone

$$\begin{split} \epsilon_y &= \frac{13}{55} C_q \frac{\oint \beta_y(s) |G^3(s)| ds}{\oint G^2(s) ds} \\ G(s) = \text{curvature, } C_q = 0.384 \text{ pm} \end{split}$$

- T. O. Raubenheimer, Tolerances to limit the vertical emittance in future storage rings, SLAC-PUB-4937, Aug.1991
- independent of energy!
- examples:

SLS0.20 pmMAX-IV0.05 pmPETRA-III0.04 pm

isomagnetic lattice

$$\varepsilon_{y} = 0.09 \, \text{pm} \cdot \frac{\left< \beta_{y} \right>_{\text{Mag}}}{\rho}$$

- Iower limit of vertical emittance
- ⇒ quantum emittance << coupling

1.2. Vertical emittance with coupling
 A. Franchi et al., Vertical emittance reduction and preservation in electron storage rings via resonance drive terms correction, PRSTAB 14, 034002 (2011)

Vertical emittance properties

- Apparent-ɛ oscillates around the lattice.
 oscillation amplitude is lower for low coupling
- Projected-ε changes at skew quad kicks.
- Eigen-ε is invariant.
- Minimization of apparent

 ε at one location
 minimizes eigen-*ε* too:

Simulation (TRACY, 100 seeds, SLS with 6 skew quads): Eigen- ε results, when optimizing on beam size at monitor (\rightarrow) vs. optimizing on eigen- ε itself (\uparrow).

Å. Andersson et al., NIM A 592
 (2008) 437-446

2. Machine preparation

2.1 BPM roll measurements

Methods:

- Local bumps (150 μ m) with fast orbit feedback: get BPM roll from corrector currents.
- LOCO fit to response matrix.
- BPM roll: 17 mrad RMS.
- Origin: electronics.
- Spoils measurements of vertical dispersion.
- ⇒ Low level implementation as "3rd BBA constant": BPM sway, heave & roll
- M. Böge et al., The Swiss Light Source – a test-bed for damping ring optimization, Proc. IPAC-2010

Correlation of two BPM roll measurements

2.2 Knobs for coupling control

- 120 sextupoles (9 families) with additional coils:
 - 72 wired as horizontal/vertical orbit correctors.
 - 12 wired as auxiliary sextupoles for sextupole resonance suppression (empirical).
 - 36 wired as skew quadrupoles:
 12 dispersive, 24 non-dispersive.

 Skew quads from orbit bumps in 120 sextupoles: 72 dispersive, 48 non-dispersive "skew quads"

2.3 Emittance (beam size) monitor

- π-polarization method: image of vertically polarized visible-UV synchrotron radiation.
- Get beam height from peak-to-valley intensity ratio: lookup-table of SRW simulations.
- Resolution: Beam height ±0.5 µm Emittance ±0.7 pm (incl. dispersion subtraction)
- Å. Andersson et al., NIM A 592 (2008) 437-446

Existing monitor (364 nm) inside tunnel:

- Aging problems (UV radiation damage?)
- Upgrade: operate at 250 nm for higher resolution (\rightarrow 3 µm beam height)
- Proposal for new monitor:
 - Magnification × 2..3. Reflective optics. Optical table outside tunnel.

3. Girder realignment

- 3.1 The SLS dynamic girder alignment system
- Remote positioning of the 48 girders in 5 DOF (u, v, χ, η, σ) by eccentric cam shaft drives.
- 36 dipoles (no gradients) supported by adjacent girders.
 - except 3 super-bends: extra supports
 - except laser slicing insertion FEMTO
- Magnet to girder alignment $< 50 \ \mu m$
 - girder rail 15 μm , magnet axis 30 μm
- S. Zelenika et al., *The SLS storage ring support* and alignment systems, *NIM A 467 (2001) 99*

3.2 Beam based girder alignment

- 48 girders (shift & angle) = 96 "correctors"
- Response & correction matrices for
 - orbit correction (saves 75% CH, 100% CV strength !),
 - or, vertical dispersion suppression.
- Solution State And Stat
 - Mistrust in girder moving procedures.
 - Possible negative impact on user operation.

Vertical dispersion girder response and correction matrices and SVD weights

3.3 Survey based girder realignment

- Girder heave and pitch from survey
- Align girders to medium line

 (long wavelength machine deformation is not a problem)
 a problem)

 Fast orbit feedback active
 \$\scale{1}\$
 correctors
 confirm
 girder move.

M. Böge et al., SLS vertical emittance tuning, Proc. IPAC-2011

Corrector strengths before and after girder realignment, and after beam based BPM calibration* (sector 1) (*girder move causes vacuum chamber deformation)

 \Rightarrow Factor \approx 4 reduction of rms CV kick in sector (= 4 girders)

Status (Sep.2011) : done, partially done, malfunction Sector 1 2 3 4 5 6 7 8 9 10 11 12 Vertical corrector kick (all CV) 140 \Rightarrow 81 µrad rms (expect \approx 60 µrad rms after repair of sectors 4,9,11)

4. Emittance minimization

4.1 Vertical dispersion measurement

- Vertical orbit as function of energy
- Upgrade of RF oscillator for fast frequency shift
- Prerequisite: determination of BPM roll errors.

Vertical dispersion measurement

Energy range $\pm 0.3\%$ ($-\Delta f = \pm 920 \text{ Hz}$)

20 points

10 minutes

 $65 \ \mu m$ resolution

4.2 Vertical dispersion suppression

- 12 dispersive skew quadrupoles ($D_x \approx 33 \text{ cm}$)
- 73 BPMs \Rightarrow 73 × 12 dispersion response matrix
- Feed in measured $D_v \Rightarrow$ apply \Rightarrow measure again.
- Best results up to now: $D_v \approx 1 \text{ mm RMS}$.

$$D_{y}(s) = \frac{\sqrt{\beta_{y}(s)}}{2\sin \pi Q_{y}} \oint_{C} F(s') \sqrt{\beta_{y}(s')} \cos(|\mu(s) - \mu(s')| - \pi Q_{y}) ds'$$

$$F(s) = b_{2} y_{co} + 2b_{3} D_{x} y_{co} - a_{2} D_{x} + a_{1}$$

orbit bump in quadrupole vertical dipole dispersive skew quadrupole

4.3 Betatron coupling correction

- 24 non-dispersive skew quads.
- from model: coupled response matrix as function of skew quad strength: Jacobian $\{\partial RM / \partial a_{2k}\}$.
- 73 BPMs and CH/CV: \Rightarrow 146 × 146 × 24 tensor.
- Rearrange: 21316 × 24 matrix \Rightarrow SVD-inversion.
 - Alternative: use only coupled RM-quadrants: $73 \times 73 \times 24$ tensor $\Rightarrow 5329 \times 24$ matrix.
- Feed in measured orbit response matrix.
- Fit 24-vector $\{\Delta a_2\}$ of skew quad strengths.
- Apply inverse to machine: $-\{\Delta a_2\}$.
- Iterate within model for large errors.
- Compensates also betatron coupling increase from previous vertical dispersion suppression.

4.4 Orbit manipulation

"dispersion free steering"

- Orbit bumps:
 - get skew quads from sextupoles
 - get vertical dipoles from quadrupoles
- Simultaneous suppression of vertical dispersion and betatron coupling.
- Individual corrector method: use all correctors with additional constraints on orbit and optics
- 3-bump method: closed orbit bumps for compatibility with user operation.
- S. Liuzzo et al., *Low emittance studies for Super-B, Proc. IPAC-2010*.
- M. Aiba et al., Coupling and vertical dispersion correction in the SPS, Proc. IPAC-2010

- Application of the individual corrector method:
- Reduction $D_v = 1.4 \rightarrow 1.1 \text{ mm RMS}$.
- Orbit 310 μ m RMS.
- Dispersion spikes resistant to correction ⇒ steps between girders

Recent (Aug. 30) MD-shift (S. Liuzzo, M. Aiba, M.Böge):
 ⇒ vertical emittance 3.6 pm with all skew quads off.

4.5 Emittance achievements

- Best result up to now (March 16, 2011):
 - a) coupling correction
 - b) vertical dispersion suppression $\rightarrow 1.4 \text{ mm RMS}$
 - c) 2 iterations of coupling correction
 - no orbit manipulations
- \Rightarrow Beam height 5 ± 0.5 µm RMS $\Rightarrow \varepsilon_v = 1.9 \pm 0.4$ pm

Outlook

Next steps

- repair malfunctioning girder movers and realign
- iterate further dispersion and coupling correction
- orbit manipulations on top of skew quad correction
- Emittance monitor maintainence & upgrade
 - understand and cure aging problems
 - operate existing monitor at lower wavelength for higher resolution (Dec. 2011)
 - design, construction and commissioning of a new monitor with even higher resolution (2012).