

Beam dynamics measurement during ALBA commissioning

Marc Munoz on behalf of ALBA Accelerator Division

M. Munoz, November 2011

Index

- LOCO Data:
 - Recovering of the optics
 - Effect of the ID
- Orbit Stability
 - Bare orbit
 - BBA
 - Long term
 - Medium term
 - Short term
 - 10 kHz data
- Others
 - Lifetime
 - Bunch length, energy spread

LOCO

- At ALBA Loco is used for two different purposes:
 - 1. Calibrate the parameters of the model (in particular the magnet gradients in the 112 quads and 32 combined dipoles)
 - 2. Calculate the changes in the 112 quads to correct the optics
- Rmagnets to BPMs is higher than one: 112 quads + 32 dipoles for 104 BPMs.
- This problem has been overcame using all the singular values and the scaled Levemberg-Markard minimization method.
- Optics recovered down to beta beatings smaller than 1% after correction, but increasing to 3% after a few days.

Loco to calibrate the model

RF frequency change = 0 Hz Tunes: (0.24, 0.39) Dipole k-value change = +0.055%

RF frequency change = +500 Hz Tunes: (0.23, 0.38) Dipole k-value change = -0.060%

Loco allowed to calibrate the k-values of the magnets. The magnetic measurements of the quads were confirmed within 0.2%. Two families (QH08, QH09) were found miscalibrated by +0.7%. The gradient dipole k-value was miscalibrated by -0.2% and has a strong dependency with the orbit and the adjustment of the central RF frequency.

 The change in tune and optics is correlated to changes in circumference due to rain or temperature.

Loco to symmetrize the optics

Quad current changes [A]

Quad current changes [%]

QH01

- QH02

QH03

QH04

QHOS

QHBS

QH07

QH08

OHDS

QH10

QV01

QV02

QV03

QV04

After 2 loco iterations the quadrupole changes to correct the optics are below +/-0.6%

The quadrupole current of the single power supplies within each family has a variation of \pm -0.3% in the focusing quads (QH) and \pm -1.3% in the defocusing quads (QV).

The difference in the QV quads is due to the errors in the vertical focusing combined function dipoles that are corrected with the quads.

Loco: beta beating correction

Beta beating of 0.3% in both planes after 3 LOCO iterations: 112 quadrupoles are used as correctors. Before the LOCO symmetrization the vertical beta beating is the double than the horizontal one by a due to the errors in the combined dipoles gradients.

Optics correction

Loco: BPM noise and coupling

LOCO input data set include a measurement of the BPM noise. LOCO fits the BPM coupling factors.

Typical BPM noise for averaged data during 180 s were on the order of 1 μ m and the BPM coupling up to 8% before the DSC mode implementation. Withy the DSC mode the BPM noise was reduced to 0.1 μ m and the coupling below 3%.

Dispersion

Effect of the SCW

- Data in process of analysis.
- Good agreement with the simulation.

Orbit Stability

- Orbit feedback running at 0.5 Hz all the time for BL commissioning.
 - Started with a modified setorbit from MML,
 - Developed a new one, almost independent from MML but in Matlab
 - Moving it to python as a device server in the near future
- Test for the FOFB running:
 - 2 BPM sectors getting the data at 10 kHz, thanks to an acquisitor board lend by ESRF.
 - Converting some of the spare timing boards of ALBA as acquisiton board/sniffer
 - Cabling between sectors done, other cabling ready in 2 month.
 - Some decisions still open.
- Correcting the orbit using only 88 of the 104 BPMs, as we have only 88 correctors.

Bare orbit

09-Nov-2011 08:02:48

BBA Offsets

- One round done
- Needs to be refined, remaining up to 40 um in some BPMs

Golden Orbit

• Needs to be refined:

The orbit has an angle in some beamlines.

Corrector setting

- Small values, up to 30 % of the maximum 10 A.
- Changes up to 0.1 when closing insertion devices.

88 or 104 BPMs

Accelerator Division

- Typical orbit corrected using the 104 BPMs:
- The spikes can be reconstructed from the bare orbit, using the SVD modes 89 to 104.

RMS Error: Horbornal 0.008000 eas: Vertical 0.002135 em Mean Error: Horbornal 0.001252 em Vertical -0.000025 em

- Orbit in the 104 BPMs
- The peaks (16) are for BPMs not included in the correction, and coincide with the places were the correction using 104 BPMs is not efficient.

Orbit Stability – BL Operation

Stability in the XBPM

M. Munoz, November 2011

One Week data BPM

M. Munoz, November 2011

Short term stability

XBPM data

SOFB data

1.5.

±1N

ayipm(

0.5

1.5

2 hours of data, with the SOFB running. $\beta_x \sim 14 \text{ m}$ $\beta_y \sim 8 \text{ m}$ Micron stability Small changes in the correctors

10 kHz data

- Projected beam position and angle in the middle of one MSS, using the two BPMs of the extreme of the section.
- Motion of the order of the micro meter and micro rad in both planes.
- More measurement, including ID effects coming.

Effect of the SCW

Accelerator

- Effect in the horizontal plane, mostly.
- In the vertical is compensate by the SOFB
- Dynamic effect

Effect of the MPW

• In process of improving the lookup tables:

Lifetime

- For the evaluation of the Elastic lifetime, 4 mm vertical acceptance in the LSS has been assumed (measured on Oct 23).
- For the evaluation of the Touscheck lifetime, 2.3% energy acceptance has been assumed (measured on Oct 26).
- For the evaluation of the Touscheck lifetime, 1.7-10^-3 energy spread and 9 mm bunch length have been used (measured on Oct 26).
- Notice that :
 - The loss rate is pressure dominated.
 - There is an unidentified loss rate increase as we increase the beam current.

M. Munoz, November 2011

Measures

M. Munoz, November 2011

Lifetime and Working point

But when SCW on

Beam size and Coupling

- Continuous beam size (emittance) monitoring
 - Use xrays from a bending magnet
 - Magnification factor: 2.295
 - Available since day-1

Beam size and angle:

Beam size during high intensity fill:

Coupling around 0.8 %

M. Munoz, November 2011

Evolution of the size

Beam size evolution during first part of Commissioning, March – June:

Energy Spread, Bunch Length

Bunch length and synch. tune vs. RF Vtotal

Energy spread from IDs

 An energy spread of 1.5E-3 agrees with the data from ID

XALOC, IV21 with nominal gap (5.7 mm)

Assumptions:

Energy SR= 2.987 Theoretical SR optics Movable masks: H = 1.5 mm; V = 0.5 mmOndulator: K (g=5.7 mm) = 1.7805

Temperature Oscillation 20 m

Air temperature tunnel

