Overview of recent accelerator physics activities at Diamond

Richard Fielder Diamond Light Source

Contents

- Resonant spin depolarisation
- Progress of minibeta optics
- Instabilities
- Coherent synchrotron radiation
- Low alpha
- Superbend

Resonant Spin Depolarisation

For diamond at 3.0147GeV, τ_{ST} = 30.0min, τ_d = 364min, P(∞) =85.4%

diamond

Resonant Spin Depolarisation

- Energy from PMT
- ~15 minutes for full scan
- 65W = ~45 μTm = ~4.5 μrad

diamond

Synchrotron Frequency

Large difference (300-400Hz) between measured Fs and expected Fs

Synchrotron Frequency

Robinson damping

$$\frac{\Delta\Omega_s}{\Omega_{s0}} = \frac{-I_b\beta}{V_{cav}\cos(\psi_s)} \left[Z_i^0 - \frac{1}{2} \left(Z_i^+ + Z_i^- \right) \right]$$

• Potential well distortion

Natural Chromaticity

 $\xi_{z,natural} = -\frac{1}{4\pi} \oint \beta_z(s) K(s) ds$

Measure tune shift as function of energy

Measured:

Horizontal: -81.4±0.5

Vertical: -31.6±0.5

Model:

Horizontal: -81.9

Vertical: -31.6

Momentum Compaction Factor

Measure beam energy as function of RF frequency

- Discrepancy likely due to effect of IDs on optics
- Can't move RF far enough to measure non-linear α_2

IPAC 2011. I. Martin et. al. - Energy Measurements with Resonant Spin Depolarisation at Diamond.

Minibeta

- First minibeta installed in I13 in October 2010
- Second installed in I09 in April 2011
- 109 optics used in ring, but no IDs yet

Minibeta Injection

Original tunes - Qx = 27.220Qy = 12.360

-Qx = 27.220Qy = 12.860

> • I13 actual -Qx =27.237 Qy =13.095

• I13 + I09 -Qx =27.201 Qy =13.371

diamond

IPAC 2011. B. Singh et. al. - Implementation of two double mini-beta optics at Diamond Light Source

Instability Thresholds

Before minibeta

109+113

Measure onset of instability as seen by TMBF, plus maximum possible single bunch

Horizontal thresholds much higher (2mA at 0 chromaticity)

300 mA = 0.33 mA (900 bunches) - 0.44 mA (680 bunches)500 mA = 0.55 mA (900 bunches) - 0.73 mA (680 bunches)

Instability Thresholds

- Streak camera measures bunch length and phase
- Can be used to calculate loss factor for whole machine

Instability Thresholds

- Microwave instability threshold at 1.1mA
- Below threshold, bunch length varies as ~I^{0.81}
- Above threshold, bunch length varies as I^{0.41}
- Not quite the expected I^{1/3}

Coherent Synchrotron Radiation

- Irregular bursting seen on Schottky diode
- Different pattern seen at 33-50GHz (purple) and 60-90GHz (yellow)
- Now also have 220-320GHz detector

Coherent Synchrotron Radiation

Fourier transform of CSR signal

Bursting behaviour varies strongly with bunch current and RF voltage diamond

Coherent Synchrotron Radiation

 Measured bursting thresholds compared with theory – free space CSR with coasting beam

Theory matches results much better for positive α

PRST-AB 5, 054402 (2002). Stupakov & Heifets – Beam Instability and Microbunching Due to Coherent Synchrotron Radiation

Low Alpha

IPAC 2010 – G. Wusterfeld et. al. - Coherent THz Measurement at the Metrology Light Source.

Superbend

• Lattice and quadrupole corrections

Beta functions

Chromaticities

	ξx	ξy
No superbend	3.56	1.1
Superbend	3.5 6	0.41
Superbend+loco	3.67	1.13

Tunes

B(T)	Qx	Qy	εx(nm)
2	27.22	12.377	2.78
3	27.22	12.405	2.85
4	27.22	12.444	2.97

Superbend

Thanks to:

Riccardo Bartolini Ian Martin Beni Singh Guenther Rehm Cyrille Thomas

