

Recent Work at the Metrology Light Source

Jörg Feikes for the MLS Team

The MLS ring

- Circumference = 48 m
- Injection E = 105 MeV
- operational E = 105 629 MeV
- I_e = 1 pA (=1e-) 200 mA
- $|\alpha| = 5 \times 10-5 7 \times 10-2$

first ring optimized for low alpha operation by use of octupoles

- Qx / Qy = 3.18 / 2.23
- ε_{design} = 100 nmrad @600 MeV

Recent Work at the Metrology Light Source

MLS Operation

until 2011 user operation: Mo-Fr 8h–20henvisaged 2012:Mo-Fr 7h-23h + "dawn special" (= no operator)

typical for MLS operation are varying user conditions

• beam current : 1e (1pA) - 200 mA

•beam energy : 105 MeV – 629 MeV

momentum compaction factor: 0.033 - 0.00005

Distribution of user time 2010

	absolut / d	relativ / %
user time	147	100
standard user mode	67,5	46
special modes	79,5	54
within special low α	39,5	27

working groups	absolut / d	relativ / %
Synchrotronstrahlungsquellen	24	16
EUV-Radiometrie	6	4
UV- und VUV-Radiometrie	58,5	40
IR-Spektrometrie	58,5	40

Recent Work at the Metrology Light Source

beam current remains stored during complete ramp cycle ->

- advantage: reduced activation

- draw back: magnets are not degaussed ->

strong hysteresis -> errors in handling of magnets = serious impact !

state changes are complex. Errors are likely and potentially serious -> operation done by automated state machine = "Operation Master" (MLS Talk@ ESLS2010)

Expanding the Operation Master (T. Birke, PAC09, Vanvcouver)

-

operator selects desired machine state

- beam current and energy
- operating modes:
- standard User Mode + vertical beam size
- Low Alpha Mode + value of alpha
- Beam scrubbing Mode + current limits push "GO" -Button

Operation Master performs transition

- analyzes actual machine state, checks that all sub-systems are ready
- transition to ramp state
- ramps down to injection energy
- switch on systems for injection
- injects up to desired current and ramps up to desired energy
- switches off sub-systems not needed
- performs transition to desired user modes
- configures and starts sub-systems for user run

Expanding the Operation Master

concept of Operation Master stretches far beyond concept of "automated operation" *)

-> Next step: including permanent beam-based check of target properties (beam size, orbit, stability ...)

see MLS Talk@ ESLS2010

Vacuum conditions

Continuus Beam scrubbing still very important to recover from openings of vacuum system. Still improving Lifetime with accumulated dosis

Vacuum conditions II

December 2010 installation of a new ID NEG chamber (first NEG chamber at HZB) -> promising behaviour !

J. Feikes; Recent Work at the Metrology Light Source

Low Alpha Operation - Nonlinear Buckets

(M. Ries, IPAC 2011, San Sebastian)

$$E = 629 \text{ MeV}, I = 170 \text{ mA}, \tau = 10 \text{ h}$$

Double beam operation

Double Beam: well seperated source points at experiment(s)

5 cm

Importance of octupoles at low alpha: lifetime vs. octupole current

User requirements at the MLS

2011 moderate requirements on beam conditions

- beam unstable in standard user mode
- "large" vertical beam size

2012: new EUV reflectometry BL and scanning new field optical microscope with new challenging demands

beam size requirement horiz. < 250 μm, vert. < 200 μm stability -> max 10% of beam size at time scale 1s – 1h lifetime -> at least 4h at high current (>140 mA)

conflicting demands: small vertical beam vs good lifetime vs beam stability

suggested solution Landau Cavity

MLS Multi Bunch Feedback

- effectively damping coherent instabilities in all planes
- bunch cleaning -> variable fill patterns can now be offered to our users
- diagnosis of beam instabilities and ion effects

10/27/11 long. Impedance measurement D. Teytelman

MLS parasitic impedance

thermo scan in search for parasitic impedances -> <u>result</u>: a flange heats up temperature rise depends on beam current and bunch length (shorter bunch -> hotter flange) Characterizing parameters (instability growth rates, current thresholds etc) were measured and will be measured again after changing the flange in Shut Down December 2011.

Example for Ion/Feedback Interaction

mode frequency/kHz

atypical behaviour during Growth/Damp Measurement

- large Tuneshift of mode -1 @ amplitudes 12 -21 μ m damps back to nominal tunes with purely reactive FB

• perfectly damping FB excites beam up to beam loss if osc. amplitudes exceeds values some 10 µm during meas.

Our model for the mechanism behind:

-osc. beam excites ion cloud around it
-> FB sensor detects sum signal of beam + ion cloud
-> FB phase shifted by "wrong" ion cloud phase
-> FB not longer reactive -> FB phase detuned
-> stronger oscillations -> detuning enhanced
-> beam loss

Outlook: next steps

- better quantitative understanding of **ion-**related **phenomena**
- identifying dominant impedances
- better understanding of the accumulation process
- use of LOCO model (Talk of P. Schmid): design and apply new optic features using individual quadrupole power supplies installed end of 2010
 - adjusting long-trans coupling at cavity
 - dispersion at injection point
 - transparency of ID
- Quantifying the impact of the different collective mechanisms (intra beam scattering, Touschek, beam gas/beam ion) on beam lifetime and emittance
- trying alternative emittance lattices
- reducing **current losses on the energy ramp** (appeared in 2011)