

SLS and **SwissFEL** Status

Andreas Streun Paul Scherrer Institut, Villigen, Switzerland

News from the SLS

- Operation
- Optics corrections
- U14 CPMU operation
- Outlook

News from SwissFEL

- Layout & parameters
- Operation modes
- Accelerator design
- Prototype R&D
- Injector commissioning
 - Summary

ightarrow

Operation

...SLS in 10th year of user operation: 18 beam lines

Performance

Availability 2011 98.7%

Mean time between failures: 92 h

Record: 325 hrs!

Coincidence arc detectors

 \Rightarrow no arc interlocks from RF anymore!

In 10 years we had 200 unnecessary beam losses due to fake arc alarms!

Optics correction

Comparative study

Results on beta beat correction (x / y, RMS) (Measurement vs. design model)

QV (tune shift from quad variation) 4.0% / 3.2%

2.0% / 2.0%

LOCO (fit to response matrix)

TBT (turn by turn data)1.4% / 3.6%Required BPM synchronization upgrade and
data reconstruction to eliminate turn-to-turn crosstalk.

■ M. Aiba, Comparison of linear optics correction means at the SLS, Proc. IPAC-2011 \rightarrow subm. to PRSTAB IPAC Special Edition

U14 CPMU in operation

Jan 2011

Cryogenic permanent magnet undulator

NdFeB at 135 K Period 14 mm, Length 1.6 m Minimum gap 3.5 mm operational 4.0 mm + impedance optimized vertical collimator (Oct 2010)

U14 flux curves

Phase error $< 2.5^{\circ}$ RMS for gap 4..6 mm $\Rightarrow 50\%$ at n = 19

Radiation and vertical acceptance

- Radiation level at U14 compared to other in vacuum undulators (4.5 mm gap): U14 @ 4 mm gap: × 5...10; @ 3.5 mm gap: × 25...50
- Acceptance definition vertical collimator and FEMTO wiggler chamber not orthogonal ($\Delta \mu_y = 196^\circ$) at nominal tune $Q_y = 8.74$ \Rightarrow losses in U14. \rightarrow would be better with $Q_y = 9.35$ (NLD §)

SLS Outlook

- User operation
 - 2012: commissioning of 19th (last?) beam line PEARL
- Evaluation "SLS 2020"
 - no major upgrade planned (e.g. lattice modification)
 - instead:
 - optimize interfaces machine / beam line / experiment:
 - more work on photon BPMs:
 - blade XBPM integration in orbit feedback
 - development of residual gas based photon BPM
 - integrated models of machine & beam line
- Maintenance
 - replacement of all four RF cavities 2012
 - new BPM system 2014
- Beam dynamics
 - vertical emittance minimization \rightarrow *tomorrow's talk*

SwissFEL: layout & parameters

 Aramis: 1-7 Å hard X-ray SASE FEL. In-vacuum, planar 15 mm period undulators with variable gap. User operation from mid 2017.
 Athos: 7-70 Å soft X-ray FEL for SASE & seeded operation.

(2nd phase) APPLE II undulators with variable gap and full polarization control. User operation end 2019.

Beam parameters:

SwissFEL: site & CDR

Operation Modes

S. Reiche

Compression Schemes

Non-linear bunch compressor

Alternative to X-band cavity for longitudinal phase space linearization

Longitudinal optimization

C-band RF system & linac

C-band pulse compressor

Outern

nq

BOC (barrel-open cavity) for pulse compression and power enhancement.

Status: First BOC prototype in production

Goal: Prototype ready for summer 2012

Undulator R&D (1)

Period: 15 mm

T.Schmidt et al.

Undulator R&D (2)

250 MeV test injector

Test injector in operation since March 2010

Phase 3:

August 2011: Bunch compressor early 2012 X-band cavity

Emittance measurement ⇒

Ref.: T. Schietinger et al., proc. of IPAC'11

Design parameters	Long Pulses	Short Pulses
Charge per bunch (pC)	200	10
Core slice emittance (mm.mrad)	0.43	0.18
Projected emittance (mm.mrad)	0.65	0.25

╶╟╬╢╟┅╬║║╠╠┽║┽║┽╟┽╏┽╏┽║┿║┽║┿╟┼║╦╌_╇╡

SwissFEL summary

- SwissFEL will be an unique facility
 - Compact: 1 Å laser at 5.8 GeV electron energy
 - Two bunch operation
 to provide soft and hard X-ray simultaneously
- Intensive R&D activities
 - Accelerator design
 - Prototyping key components:
 C-band RF and undulators.
 - 250 MeV test injector commissioning in progress.
- Time schedule
 - Approval expected June 2012
 - Start of commissioning July 2017